4 resultados para Antioxidant capacity

em Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ganoderma lucidum is a medicinal mushroom traditionally consumed in Asian countries that presents several beneficial effects already verified. Despite all studies about their bioactive compounds, the best cultivation media enrichment aiming to increase the production of these compounds is still uncertain. Besides, few studies are related to the performance of production animals. In order to test different cultivation media for G. lucidum mycelia, agricultural residues (solid state fermentation) and different sugars and aminoacids (in culture media with agar), were tested to evaluate G. lucidum mycelium growth. Supply of flour with G. lucidum mycelia obtained by solid state fermentation (wheat grain) for rabbits was also evaluated. Mycelium of G. lucidum developed very well in all agricultural residues, soybean hulls was the residue that presented higher growth rate and higher concentration of β-glucans. In the cultivation media experiment, G. lucidum also developed well, media that contained cellobiose and tyrosine, despite presenting lower growth rates and total growth within 10 days, produced mycelia with higher concentration of β-glucans and trolox equivalent antioxidant capacity (TEAC), respectively. Rabbits did not show any sign of intolerance to feed with different concentrations of flour with G. lucidum mycelium. All performance parameters and dressing percentages were adequate to the age at which they were slaughtered. Histological evaluation of organs presented alterations in renal cells (tubular and glomerulus), indicating a possible renal lesion according to the increase of flour with mycelium in feed. Histomorphometric evaluation showed increased vilous height in ileum and decreased vilous width of jejunus at 0.5% concentration, and decrease in crypt diameter according to the increase of concentration of flour with mycelium in feed. These results indicate the possibility of more studies regarding the aspects about cellobiose and tyrosine utilization for the production of bioactive compounds, and about toxicity of this mushroom mycelia, assuring the safety in supplying this product for animails.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Jerked beef, an industrial meat product obtained from beef with the addition of sodium chloride and curing salts and subjected to a maturing and drying process is a typical Brazilian product which has been gradually discovered by the consumer. The replacement of synthetic antioxidants by natural substances with antioxidant potential due to possible side effects discovered by lab tests, consumer health, is being implemented by the meat industry. This study aimed to evaluate the lipid oxidation of jerked beef throughout the storage period by replacing the sodium nitrite by natural extracts of propolis and Yerba Mate. For jerked beef processing brisket was used as raw material processed in 6 different formulations: formulation 1 (control - in nature), formulation 2 (sodium nitrite - NO), formulation 3 (Yerba Mate - EM), formulation 4 (propolis extract - PRO), formulation 5 (sodium nitrite + Yerba Mate - MS + NO), formulation 6 (propolis extract + sodium nitrite - PRO + NO). The raw material was subjected to wet salting, dry salting (tombos), drying at 25°C, packaging and storage in BOD 25°C. Samples of each formulation were taken every 7 days for analysis of lipid oxidation by the TBARS method. In all formulations, were carried out analysis of chemical composition at time zero and sixty days of storage. The water activity analysis and color (L *, a *, b *) was monitored at time zero, thirty and sixty days of storage. The Salmonella spp count, Coliform bacteria, Termotolerant coliforms and coagulase positive staphylococci were taken at time zero and sixty days. The activity of natural antioxidants evaluated shows the decline of lipid oxidation up to 2.5 times compared with the product in natura and presented values with no significant differences between treatments NO and EM, confirming the potential in minimize lipid oxidation of Jerked beef throughout the 60 days of storage. The results also showed that yerba mate has a higher antioxidant capacity compared to the propolis except the PRO + NO formulation. When associated with yerba mate with sodium nitrate, TBARS values become close to values obtained only for the control samples with the addition of sodium nitrite. The proximal composition of the formulations remained within the standards required in the IN nº22/2000 for jerked beef. Samples that differ significantly at 5% are directly related to the established type of formulation. The count of microorganisms was within the standards of the DRC nº12/2001 required for matured meat products. The intensity of the red (a*) decreased with storage time and increase the intensity of yellow (b*) indicates a darkening of the product despite L* also have been increased. These results suggest that yerba mate is a good alternative to meat industry in reducing healing addition salts when associated with another antioxidant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The southern region of Brazil, especially the states of Parana and Santa Catarina stand out for growing grapes and apples for fresh consumption and in order to add value to these products, process the material for the production of wine, juices and jellies . As a result large quantities of by-products, such as peels, seeds and pulp are produced becoming environmental problems. Studies reuse of these by-products have attracted interest because they have shown a high biological potential, due to the presence of high levels of phenolic compounds, which are associated with a lower incidence of disease caused by oxidative stress, due to its antioxidant, antiinflammatory and antibacterial properties. Currently, few studies are presented on the phenolic composition and biological potential of waste grape variety Bordô (Vitis labrusca) and apple (Malus domestica) Gala variety, cultivated in southern Brazil. Within this context, the objectives of this study were: compare the efficiency of solidliquid and liquid-liquid extraction, perform the optimization and validation of analytical methodology by HPLC-DAD for the separation, identification and quantification of multiclass phenolic compounds, evaluate the activity antioxidant by sequestering methods of free radical 2,2-diphenyl-1 picrilhidrazina (DPPH) and 2,2-azino-bis (3- ethyl-benzthiazoline-6-sulphonic acid) (ABTS) solution, reduction of Fe3+ in Fe2+ method (FRAP), ORAC, RP-HPLC-ABTS online, Rancimat and determination of total phenolics three agro-industrial byproducts, pomace and stems grape Bordô produced in Paraná Southwest region and Gala apple pomace coming from the Santa Catarina West. Optimization and validation of chromatographic method showed satisfactory quality parameters for the compounds of interest and the solidliquid extraction was more efficient in extracting phenolic evaluated. The three byproducts evaluated showed significant levels of phenolic compounds when analyzed by HPLC, especially flavonoids, catechin and epicatechin besides that showed significant antioxidant capacity. The grape stems extract had the highest sequestration capacity of DPPH and ABTS radical and reduced iron, and high content of phenolic compounds. The apple pomace extract showed the best response to the Rancimat method, which indicates a high potential to protect the oil from lipid oxidation, was no significant difference when compared to synthetic antioxidant TBHQ. The results of this study showed that the agro-industrial coproducts analyzed are rich in phenolic compounds of high antioxidant capacity and therefore must be better explored by the food and pharmaceutical industries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lasiodiplodan is an exocellular β-glucan with biological functionalities such as antioxidant, antiproliferative, hypocholesterolemic, protective activity against DNA damage induced by doxorubicin and hypoglycemic activity. Chemical derivatization of polysaccharide macromolecules has been considered as a potentiating mechanism for bioactivity. In this context, this work proposes the derivatization of lasiodiplodan by acetylation. Acetic anhydride was used as derivatizing agent and pyridine as catalyst and reaction medium. The derivatives obtained were evaluated by its water solubility, degree of substitution (DS), antioxidant potential, and characterized by infrared spectroscopy (FT-IR), thermal analysis, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. Acetylated derivatives with different degrees of substitution (1.26; 1.03; 0.66 and 0.48) were obtained, and there was correlation between the concentration of derivatizing agent and DS. FT-IR spectroscopy analysis confirmed the insertion of acetyl groups into derivatized macromolecules (LAS-AC) through of specific bands concerning to carbonyl group (C = O) and increase in C-O vibration. SEM analysis indicated that native lasiodiplodan presents morphological structure in the form of thin films with translucent appearance and folds along its length. Derivatization led to morphological changes in the polymer, including aspects thickness, translucency and agglomeration. Thermal analysis indicated the native sample and derivative with DS 0.48 presented three weight loss stages. The first stage occurred until 125 ° C (loss of water) and there were two consecutive events of weight loss (200 ° C - 400 ° C) attributed to molecule degradation. Samples with DS 1.26; 1.03 and 0.66 demonstrated four weight loss stages. The first stage occurred until 130 ° C (loss of water), following by two consecutive events of weight loss (200 ° C - 392 ° C) attributed to degradation of the biopolymer. The fourth stage was between 381 ° C and 532 ° C (final decomposition) with exothermic peaks between 472 ° C and 491 ° C. X-ray diffraction patterns showed that native and acetylated lasiodiplodan have amorphous structure with semicrystalline regions. Derivatization did not contribute to increased solubility of the macromolecule, but potentiated its antioxidant capacity. Acetylation of lasiodiplodan allowed to obtaining a new macromolecule with higher antioxidant potential than the native molecule and with technological properties applicable in various industrial sectors.